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NASA TT F=13, 613

A SIMPLE ALGORITHM FOR ROTATING THE PLANE OF AN
ORBIT IN THE CENTRAL AND NONCENTRAL GRAVITATIONAL
FIELD OF THE EARTH

V.V. Veselovskiy

ABSTRACT: The problem of the repeated passage of a satellite
over a given point on the terrestrial surface is discussed.

A simple algorithm is proposed for rotating the plane of the
osculating orbit which is initially described as an example
in the central gravitational field of the earth and then ex~
tended to the noncentral field, which is taken into account
with an accuracy up to the first harmonic.

The functional is derived on which is based tlHe switch-
ing on and switching off of propulsion and the accuracy of
the thrust cut~off is checked for the size of the miss during
repeated passage of the satellite. The thrust is assumed to
be limited in magnitudé and acts for a specific finite interval
of time, and the satellite is assumed to be in the form of a
material point of variable mass.

It is shown that for certain assumptions, the satellite's
equations of motion are separable. An estimate of the error
in the solution for the simplified problem is carried out.

Statement of the Problem

1. The problem of the repeated passage of a satellite over a given point
on the terrestrial surface is discuséed. A rotation is carried out by a force
-normal- to the plane of the oscuiating orbit, which is éssumed to be near-
circular. The times of switching on and switching off the thrust are determined
from considerations of an accurate passage over a given pointl By "accuracy of
passage' is understood the minimum angle between the radius vectors of the point
and the satellite. A functional is initially derived for a central field and
then for a noncentral field; the gravitational'field of the earth is taken into

.account'with an accuracy up to the first harmonic. '

The calculations show that negiecf'of the variabiiity of the sateliite's
mass. causes an error in ‘determining the position of the orbit's plane as largel

as several degrees, which is objectionable.
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An algorithm for solving the problem reduces to the féllowing. The
satellite's spatial equations of motion are solved. In the computational pro-
cess all the variables of the active trajectory at any fime are known. Takiﬁg
them as thevinitial conditions of tﬂe satellite's free~flight trajectory, it is
possible to derive its parameters from which the corresponding functional can
be formulated. The latter depends, in the final analysis, on the parameters of
the active trajectory and on the paraméters 6f the free-flight trajectory. Its
rezeroing takes place only undef the conditions of the existence of a solutéoﬂ 44
of the encounter problem. At this time, the transition of active flight to
free flight takes place, i.e., thrust cut-off occurs.. The time of rezeroing
the funétional should be determined extremely accurately. The trajectories of
a satellite's free motion are known for a central field, but for the case of a
noncentral field, relatively simple analytic expressions are derived which are
brought into the corresponding fuﬁctional. An estimate is given in this paper
of the error of these expressions which corresponds to the assumed modél of the
gravitational field. Such an approach to the solution of the problem permitted (
simplifying as much as possible the algorithm f&r rotating the orbit's plane and
simplifying to- a minimum the expénditures of machine time for carrying out all

the numerical operations. . s

The motion of the object around the center of mass was not taken into
account in the present work, and the errors introduced by the initial data and
the instrumental errors (both determined and accidental) of the on-board and

ground-=based control system were not considered.

In Appendix 3, the éystems of equations are presented according to which
the computation of the algorithm for rotating the orbit's plane in a noncentral
field is carried out. For comparison, the control algorithm in a central field

is given in Appendix 1.

The justification for replacing'the complete system of equations of motion
of the satellite by the simplified set with the corresponding limitations which

occur in a given problem is given in.Appendix 2.

The fact that the derived algorithm can be reproduced on an on=board com=- Zﬁ

puter which operétes in real time is of significant value.
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Algorithm for Rotating the Orbital Plane in a Central Field

2. The equations of spatial motion of a satellite in osculating variables
are described in a well-known manner. One can, for example, transform them to

the following equivalent form [1, 2].
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where it is assumed'that
1) = 4/dv is the vector of the perturbing accelerations,
v is thé true anoma%y, ~
kr’ kv,'kz,are the pro%ections of the transfer vector E onto the orbital
axes directed along the radius vector, along the perpendicular
to it in thé osculating plane in the direction of motion, and
along the perpendicular to the plane,
z» : :

g (‘2.2?

<\!"

where

ca,

is the vector of the perturbing accelerations,

o

is the earth's gravitational constant,
= 1/r is the inverse of the radius vector,

is the orbit's parameter, e

is the angle determining the position of the line of apsides, and

O = 9”9

is the longitude of the ascending node.

The variable v, as is well kﬁown, is associated with the time t by the
following equation .
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CtE==T '\ (2.3)
T

In this case, when the satellite is taken to be a material point of vari=

able mass, the transfer vector can be written in the form

;El= 3
- 4-B3T

L)
where -

k_ is the initial (at T = 0) transfer;

B is the coefficient which takes into account the variation in mass,

¢ r

0 A -‘
Teqthn  © Gastela 1 (2.3)
t off on . " t > coff* -

ton and toff are the times of switching'on and switching off the thrust,

respectively.

We note that equations 1 and 2 in (2.1) represent the motion of a satellite in
the plane of the osculating orbit and equations 3 to 5 represent the position
of this plane in space. In the case.of motion - in a central field of attraction
the system (2.1) is separéble in the case where kr = kv.= 0; the values-of P

and y are known for elliptic motion

Py = 4-@-'9@ (v-\g,){
where

e is the eccentricityof the elliptic orbit'andl

.vb corresponds to the orbit's time of perigess passage.

3. Let the satellite (S) move in a central field, and at some specified

time its position over a specific point on the terrestrial surface (P) is known,

e

(2.6)

Ky (2.4)
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and it is required that during its subseduent return, it again pass over this
point on the terrestrial‘surfaceﬂ For this we apply the transfer kz, whosge |
times of switching on and switching off are determined by the relation %(2.5);

the satellite is considered to be a material point of variable mass (during
operation of the propulsion). Such a problem does not.have an analytic solutioﬁ;
therefore, wé'attempt to formulate an algorithm for finding the quantities Toﬁ

and Toff;

for simplici}y we consider the orbit to be circular.
We consider Figure 1, oh which it is illustrated that:
S, P is the position of the satellite and the selected point on the
- terrestrial surface at the current instant of time;
B is the point of intersection of S and P; |
0, is the latitude of the poiﬁt P, a constant quantity;
XP’ A ’KB are the longitude of the points P, S, and B respectively;

S
il is the angle of inclination of’the plane of the initial orbit;
.i is the current angle of inclination of the‘orbital plane, and
Ql, Q) are the angles of right ascension for the initial and current orbital /8

planes, respectivqu.

Figure 1. Geometry of the motion.



. From consideration of the spherical right-angle triangle ABD, the following

relations hold: ’

'S‘"()‘B o R)= Al A2.7)
. T . ‘ t{.‘;i § g
sin(Uvau, )= Sinfe (2.8)
4 sdne
where

A

B is the longitude of the point B, assumed to be the instant of encounter,

and Auy corresponds to the arc CB along the orbit.

Knowledge of the quantity Auy in the case of the problem of a central field
uniquely determines the value of the argument‘Avy for the free-~flight trajectory
(which is proportional to the time of prediction Aty), thus determining the

instant of the encounter, since

and w = const after the cpt-éff for motion in a central field.

k., The equations which determine the position 6f the plane of the osculating
orbit.in (2.1) possess the inadequacy that at i = O tbere appears a singularity in
the solution. In addition, it is more convenient when calculating on a computer
to get rid of as much of the trigonometric functions as poséible. We use [2]

and perform a replacemeqy of variables:

"gé = Sini Sinu . (2.9) /9

xt

3
!
Y. = Sun L. LOS U . !}
J

as a result of this the system‘of equations’assumes a form suitable not only for

analysis but also for- computations. We hote immediately that



We obtain in advance a series of useful equations. It follows from

spherical tfigonometry and the Egs. (2.7) and (2.8) that

Csing=siny sni, ) (211)

.‘ 1 . \ . . M ' -

‘t% (A=Sl}=Tau cose,

L -
where _ N
9, X\ are the latitude and longitude, respectively,
"2, u, i are the angles which 'determine the position of the satellite in the
system of coordinates associated with;the orbitalvplane. Combining

(2.9) and (2.11), we obtain '

31—.- Sini Snu =‘$i§5. -5;%=5m‘f, . (2.12)
From (2.12) and (2.13) | _
By analogy with (2.15) w'e; have /10
g (A =) 2 Yigl3, (2.16)

To
where

le = sin mo is the specified latitude of the point P.

5. From consideration of Figure 1; it is ﬁossible to derive equations. for
the functional of the thrust cut-off'iq a central field. At the switching oﬁ
of the. thrust, the position of the satellite (S) is determined at each current
time as a result of solving the system of equations. With the help of the
relations (2.7) and (2.8), taking into account the fact that after the cut-off

w.= const., we derive the size of the prediction of Av&l and the longitudé,KB of

o

O

1. Av&'is the value of Av when the functional® is rezeroed.

[



the point of encounter B. The position of the point P'at'each time is also
known (this would be the current position of the peint B); it is determined
from the following expregsion: '

)\ 2>‘ +- ““‘3 v) (2.17)'

6“
where -

v, is the angular velocity of the satellite and

‘)\P=)\oatv=0.

It is completely obvious that in order to have an encounter, it is necessary
that the points P and S pasé through the point B at the very same time, and this
indicatés that the following fuﬁctional should be equal to zero at the current

time

—
: AF’;_?O- (2.18)

w
>¢

B _)\P"--
. o

' . . o ©
The central angle A between the radius vectors of the points S(rs ) and

P(;yp) is determined in the following manner

bodhd §oL

T = 4 0059 005 hes cos‘fs.‘;wﬂ.l\s; Sny } (2.19) /11
, e

;;A = {.cos ¢ c,;;}x‘P, Ccs?o.tin)\i:.. sinte § o

-9 , "0 : oo o
..COS'&'ﬂS (,rS’ I‘y). . L
In scalar form the Eq (2. 19) is

cos & = cos\f cos@ cas (}\ =X )+ Sm? Sm‘fo .

. . B }
6. In Appendix 1, the satellite's system of equations of motion is given

along with the control algorithpm.

It is known that when an instantaneous impulse is applied, ythe corresponding

thrust switches on at v = 3 m (i.e,y past = until passing the encounter poipt){
2 ‘ 2
Therefore, as a first approximation for the sw1tch-on time of the thrust we

=3 U rezeroing the
select this value tonl (it corrgspop@s to vbnl 5 ). ~ Upon g



functional (2.18) thrust cut off takes place when v = v off.’ which corresponds
1

to time toff . Since the process of rotating the orbital plane in a central
1
field possesses well-known symmetry, it is natural to select the time of thrust

switch-~on in the second approximation according .to the following scheme.

t
Let ‘the impulse P = rOffl k dT be a known quantity; it is derived at the
time of the rezeroing of tﬁe functlonal (2.18). We distribute,this impulse
equally from the point v = vonl and select this as the criterion for the switche=

on time of the propulsion based pn the seéénd approximation..

‘Then it is obviois that , Y 1}2

©

)

E=]

) (2.20)

o

from vhich we derive, taking (2.4) into account,

%

LK < (2.21)

ey
© by |

or, solving equation (2.21) with respect to At, we obtain

L s - .
Ak o {-e ?“‘.,;' (2.22)
B e

Taking into account the fact that .
Av = V At,
on o :

we obtain. the algorithm for switching on in the second approximation

v = Vv
. on on, = Av
2 1 on’

i.ee,

(2.23)
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We note that in the case of a constant thrust, when B = 0, we .obtain’

. , ...%_.5_ o pB
4 Hee. T @ The o (2.24)
dim al= lim —~———— = tim — e, '
B0 ~B=0 . 9 80 L 72K°‘
i . ' . ‘. - ‘; . .
which can be derived directly from (2.21).
" It follows from (2.24) that
LN
Av: .Vo‘ ...;.72...
b
2 K,
and since the thrust is constant, '
ey -
cavsav o 2of Vony :
; on ... 2 - (2.25)
H . . . . '
t
. . . ‘ V.; - . o o
vwhere it is evident that ~Yony = V"_‘f‘l oAV L, ;
or ’ ' /13
v 37+ Yorry ~ Vony
on, = 2 -

(2.26)

Having obtained the wvalue of Von from Eq. (2.23") or from Eq. (2.26), the cal=-
2 . .

culation is repeated again until the rezeroing of the functional (2.18). The

machine time expended in the calculation of the act.ive section is not great

(it does not exceed ~ 5 minutes).

The results of the calculation, even based on the simplified Eq. (2.26),
give a fuel saving of ~30% and more for cértair.x conditions of flight. We note
that the time of active flight simultaneously decreases upon the calculation of

the second approximation.

10



Algorithm for Rotating the Orbital Plane
in a Noncentral Field

7. The gravitational field of the earth is earth is taken with an accuracy

of the first term of the expan51on

e s o

| VU= / {4+8(4-3sm \P)] (3_1')
where E ¢ ( )2)
Ro= 6.378T5 IOSM, I
£ =0. 001623. CRNES

-

Prescribing the gravitational field of the earth with high accuracy does

not have practical meaning as far as the set-up of the pfoblem is concerned.

We attempt to apply the scheme outlined above to derive an élgorithm for rotating

the orbital plane in a noncentral field for the problem of the motion of a '

satellite in a noncentral field.

As is well known:

&

r‘n

o Rowe ‘{f—ﬁ&ﬁ

. (3.2)

fL) .

SKYE = satl sinlu,

i sin H’k"j‘;
J

Kp=-~ & sin2i sind.
.. -
Taking into account (3.2) and replacing the variables in (2.9) instead of

(2.1), we obtain the following system of equations

‘ 'él:'z-Z) . .1
,az;-§+ [4&(4sy+2gnxgj_ |
_ P“"-E X«B’z* T | 5‘ ' (3.3)

. 4.3’433’2') " K : - . |
53, =-X +%('-2£ y“3,5) ,-'
e¥=-%(g-2eny), . -

where here as earlier it is possible to write instead of the last equation

11
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on the basis of the existence of the integral (2.10). .63 - ‘_.& BRI

8. The system (3.3) together with'the control system solves the proposed
problem exactly. However, to derive the functional -of cut-off in a noncentral
field,‘it is scarcely convenient, since usually'the equations of a satellite in
a specific interval of time of the motion can be linearized relative to some.
reference orbit. Moreover, it ‘is well'known that if one gives a specific motion
(i.e., precession) of the orbital plane with a given Q,, then the linearized

equations have essentially the same form. Under the conditions of the proposed

problem, people usually take

'.52,3 = - €4CO$L = 'QQYESt.

(3.4%) /15
with high accuracy. The physical meaning of such a linearization con;ists in
the fact that the equations of motion of a sételiite can be considered in the
first approximation to Be independent of its motion in the osculating plane and
the motion of the osculating plaﬁe itself. However, such linearization is
conveniently carried out in other variables but is not applicable for the vari-

ables Yl’ Yz’ and YB.

Based on the idea itself for setting up the problem, we would like to have
at any time the analytic solution (3.3), only in this case we will be able to

use effectively our prediction functional.

Two situations can arise: when the reference orbit is circular and when
the reference orbit is elliptical; in the latter case the equations are somewhat

more complicated.

For realistic limitations

| < €, (3.5)

where
y corresponds to the unperturbed motion of the satellite, and
6y 1s the deviation from thls motion upon a perturbation of the traJectory
L)

in the case of a noncentral gravitational field.

|

12



One can separate an independent subsystem (see Appendix 2) from the system

(3.3):
1, (3.6) /16

where

-Po is the parameter of the unperturbed orbit.

If the altitude of 'the circular orbit above the earth's surface is ~130 km,
then the limitations (3.5) correspond to lsylmax = 10.5 km.

We note that the aléorithm'for switching on the propuléion in a noncentral

field remains the same as in.a central field (see Section 6), since in practice

su e

’ }K3§.>> 26'3"'2&3/4\5'3‘96«’ | (3.7)

where according to Appendix 2

€= (Rey, ) € = const, (3.8)

<

holds for circular orbits, Py = 1.

9. Based on thé concept of setting up the problem, it is necessary for us
to know the satellite's motion at any time after thrust cut-off, when the
satellite is movihg only under the effect of the gravitational field of the

earth. ' This reduces to the solution of the following nonlipear system of
equations: »

=8 (126300, | (3.9)

where

[

| = const.

13



The reference orbit is taken to be circuiar.

Let the initial conditions for (3.9) have the foilowing form:
. Y \/ - . R
: 3’, (Q)lew . 32(0)-3,30 o (3.10)

These expressions are derived continuously as a result of the solution of the

We perform the following obvious transforma?ibns:

W= -hE (1+26%),
YR ACE R ALE S AN

1 .
where YB = 2&4Y4Y2Y3 for Y3 # O3 if Y3

= 0, then we obtain a trivial céée; It
’ '
follows from the last expression that

and the variables are separéted, giving

| s g .
€nk?r_= £‘X‘, .
from which < & Xf

. XB;' Ce '

We determine the constant C:

eyt »-63«,
fio=Ce C=X3° s

AL U

we get

(3.12)

L] ) A
Substituting (3.12) into the three~equation system (3.9), we obtain
a‘d’-z#é’z Ly AT (3.13)
'] 2 *'X e 9 C

14



or, taking into account the first equation of (3.9) /18

. 2 2 2 ZE 2_y2
R e MY
B e N oo

The variables are separated'in tHe last equation, and the solution reduces to

a quadrature::

{ dh__ — = av+C.. (3_1‘4)
\/4_%2_3;'82&{(1';.-7,0), o N

We note that in the plane of the phase variables Y,Y, the expression (3.13)
represents an ellipse with first-order accuracy up to the terms 61. Actually,

discarding terms in the expansion of a lower order of magnitude relative to

€1 we obtain - o
' 2 2 r ol “ e —~k
Xf“' Xg_ + $i {."2_"-’264‘(54 -Lo )j"" *7;_".
or '

'(4+22{‘£{; )X:' +'Xf = ‘f“'zsza (4“2&-1%0 )3

from which the equation of the ellipse will have the following form:

Loooho g (3.15)

where

2 A=Y (1-26:75)
4+ 28,95

32-?‘ 1=~ 3'32; (4"2.51.3’; )." "

When €,.= 0 and a = b, the expression (3.15) is converted into the equation of

a circle with a radius



In order not to calculate the constant C, we rewrite (3.14) in the form

i
B
<

(3.16) /19

S~
lI
i
f )
o .
P
-5,
L
o{
l
i%
LA
&

We expand the integrand of the expression into a Maclaurin series in the small

parameter 61 to the order 6?, inclusively

He,)=

0
*ﬁ ~ O 4+ (O 6 + Li_g__ ,
\[‘f X X 254(3 d": f( f / 2 4" (3.17)

. Pt
£{g) & ——— s .
) Vai- X“ '
4 (0) (\0(125 (XX )“}})z’ﬂ | . ,v .'v_o ) ..
C L Yor 13 YEN ét 2 1__1;-".} °
?('(O) T:T%'F/:L }:“’ 2 b0 a®-y* ] .

where

t

We 1ntegrate the first two terms in Eq (3.17):

X1 dy . ot ’ "‘4 ) ' .
,g Vvt =ancsind | = axe sindh - angsin 2 (3.18)
Q _X G ’ G a
. !
{ jo
Oto
Upon integrating the fo}lgwing expres;ign
: 1 2 o2
ij Y - blm dX - ( )
"z 3 (3.1
e (a*- Xz)v/'z 7
. 4

we make the following replacement of variables:
' EYNPE
{=a%sinf,
v 2 .

16



Then we write instead of (3.19)

o, € Y 2
[ osan'y--% ey N Yoo 49 (3.20)
B/ & | '—M‘G‘_‘d‘?z}" a f ——-—--oi‘f-._iz..-j — 5
3o J cos e oS 5 -
¢ o LI
[
; b 3
where ?0 = e din . Y =aresim—y s
Q
ety | oo/
Sin . b - ( 3 )
2ldoz wsin®rtaly (- +5/1 =
J us\?d b ‘?A‘ t‘g I 9_ ,
° R "‘}" \D’.\A <
P ¥~ ¥ + dn 9 (7:{-%/‘ =
at S ‘t? (o 12) (3.21)

i?. . hd . 1% ~/ (30 22)

Taking into account (3.16), (3.18), (3.20), (3+21), and (3.22), we obtain

. ’ L \g . N : . - .
© AV = QRC Sih e w gRC SN S4g ' * :

2
W W § ] (3.23)
[asact-—é-;’-]f +o(€,). |

y TR YA
Aol } s
+{-~§R(OFX€°}+ zengh?; }{ -:‘:L)
3 'gs)(f 'Qa)

Here r b4 . . )
. (o) . 2 a('d \&{‘3'-1;)2 3,2 4 Vo
lO(&‘“:‘}s { ———-—2 Ei !dali— 85 Of“ajl {(az 51)3/2 ({+2Xm G.zl"blz / d?{é
X{q . 69@ .
. % 2 32 :
2 2 (t-14; ) 3,2 1 I '
< {0 =V s
<qe | o | R |
4 '340 a .
One can show that
("!2..- 2 a2 . . . -
\ 4. {0 4 a ! ~-13 2 '; | ; 3 X Vv
—— 3 =Y -1("'5‘0
(Q},fz,l)‘/z}‘ A 'f’ “"'.2 420 c‘z’_’-‘{zs%.‘“’ 2\ a ) :

17
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from which 0 (6 )

Yo [+ 2 (&) T (0o v,),

i.e., Eq. (3.23) is valid in the restricted interval |y, = Ylo‘ < 3z with an

accuracy of the order of 0(61).

10. We attempt to find a simpler form of solution than the one obtained

in the preceding section.

We expand the integrand in Eq. (3.16) in the following manner:

TN N 4(7 3’«:} % v
[-v:yie ] { PR it v o(s)end) =
: S
_ 2, __.-4/2 _4/2 .
= [4'3/.% ("*_28¢X4§ )'Xz(""'“?eﬁ; )_} . (“3}'," 3 S
- where 2 2 2 T |
O‘(EJ =2(X‘ -, ).54 L
E S LI CY .
1= X (‘ -2¢ Xdo) X(“Z‘Ei%i/\ .
One can show that ‘ g\ <1. Actually, o
X“ = '{ - X_;o < 4 X}o -
We expand the denomlnator of g, _ ) e A
z 2, 2 (w2t yeD
'{-—b/h‘i' 25{.6/30 brqa X 26 X Xéo o-_x +'2E“‘53° (“540“0.50 /.9
from which - e ) SRS
i - < \ o,(§4 __O___(_?‘.}——————-——" 3 \
\3 i < H X*j" : 25(\]2 (Xio_ 30) ‘
taking into account the symbols a'bove, we obtaln
__st_<ia<xm—a> [<1.
We expand the last bracket in (3 24) into a series and obtain
| ‘-"e(?f %5 )5 -~ o
[4 3’ 7{ J, SR (3.25) .

, “ih :
18 C= B—x; (‘§~2€,){$}-%’%(‘3+2£¢\e’3‘: )] iﬁ_'%z +o(§}],

/21
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where

If one writes down the following approximate equality

! =¥z}t . g
[ X X“ 25 J )] ‘7 2

2

~ - .
= D XBO 4 2¢&, 2,40) -0 (4*2£13/30)J 3
then according to (3.25) it is correct with an accuracy m, where

. - .
< 8{ . (3.26)

o

toad 4}
m< 313 ut< Togl|vi-y

According to Eq. (3.16), we obtain an estimate for the integral

dy

Vo »
| Y Uyl | % (1z¢]
o o o .

Y
ad

'f' Cody
3 V- m‘z-ze«x“) ~(e2egt) |

We introduce the follow:Lng symbols

=4 +2E Xu
A =1"X3 (""QEX«:)'
Integrat:mg the rlght part o:f the last equatlon, we obtaln
1 K . .‘ ]
AV =2 arcsin --—§ = = {a:z.c.sm-—-—z-~a.zcs:.n -f—b:’-?-_i 3 (3.27) -

or . . "Z_ZB

r B T R R 4

Eq —Z%bﬂ [KQAV + G 5N A ] | (3.28)

'
L]

Furthermore, it is evident that -

} C
¥, = Aces KoV + auc sin —-/-zﬁ/f‘-’-] . (3.29)



It follows from (3.28) that when Av = O, T, = Y00 but from (3.29)

=4 ,. o .AKW“E‘,@ F » .“* = T ; .
Y= Acas feac sin T] = Acasj_wzacos\{éb_- *Zf_e.g.. .]"\/A_"K:X«; - (3.30)

If the expressions for A and KB are expanded, then we obtain the identity:

oAt 2 2 gz s
? - A“(‘vy "4 ?5,30 (4 2843/49 Xeo (4*25 X';o ) Jf‘-b,_go_z/m e
11. We solve the system (3 9) by another method. For this purpose, we
apply fhe functional method of Newton. We have

e a‘(z,,x),__ ¥ (o) A 2{(0 (3.50)

{0

where %. Dt(th == [4"‘25 (4 3 ‘ ) )]54

We introduce the functional which is the distance to a desired point in the

functional spacg'Yl(v):

ay 2 .
1= j [X;’-J‘ (_74,}’}'” dT, . (3.32)

where
Av = v = v,
(o]

vb is"the coordinate cerresponding to the current time.

‘The -approach of the functional I to zero upon fulfillment of the initial
. .
conditions denotes the tendency of Yl(v) to the desired solution Yl*(v).. L /2k
As in any method of successive approximation, it is important to choose
(0)
(v)

successfully the approximation Yl

similar to (3.28):

. Ve choose this. solution in % form

(o} Ty
' ?J/ _-M stn {K,aV+ u,,;,

- * (3.33)
%,

= M, K, cos (K, av+ Lol

4
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° 40

t@b = 048 aof‘a 3
..O )
K2 =4+2§4[1—X,:~ (%) 1.

where

We note that in comparison with the pi‘eceding section we have here

VR
Ko .
Sin Lo‘-: -ﬁA—({—m— s
- iy .
cos iy =\ |4 = Ko fo A= Yio RS
A A A
t% LJ — KU }{10 3 .
0
. €20 .
2
Mz___A____ X22+Kzzzeo XZ_'___X_?_:E__
= == ~ =
K Ks K

We represent the succeeding approximation in the form

*) : (a';, ' _
'X‘ﬁ‘ (V) = b/¢ \V‘) 'HYX?_(V} ?
where ' E . ' '
13 TGN e "
hoy <<y, 11, ‘o'x,(o)= &, (p):
The variation. 1n the funct10na1 I caused by the variation SYl(v), is
(°) _’ .
X 5/4 C{(L— (3.34)

gj 2}[%’“@ (o)][ u 'af)
. - 125

calculated with

Here -
e ]tm K |
? 3/ ? W are functions of Av,
b B & )
(0)
Furthermore, based on a well-=known procedure, e select from among all the
21

variations the following



‘ B O e @)
5:({: :a_i__gx' 5& . )\(%K ) _ Jﬁ )7

Y, X S (3.35).
5.2&(0)-: , 0%, (0)=0."

We introduce the function n(v)

iz(v) __5__-.{@_(.&)—

'%:“‘<v>=z’;‘°’(v>sr Ay (vl

and we obtain instead of (3.35)

?”;‘_:\oifﬁ 2{-4_2‘2&_(-03 u(a) f(‘?) ; (3.36)
2y 22’1 e | ,
plel=0 , Q(o) 0.

and so, according to (3.31) we obtalﬁ .
YL () 1(2)
e MR RN o
oY . A (3.37)
O] ) .
B
?K S

i 0

Substituting (3.33) into (3 37), we obtaln
' f (o)

"y

= 25 M Ko sin [Z(KoAV v Li )-_l . v'

O . . :
(G) . » . (3-38)
Lr A 2¢4+2£M [2 cos2(, av+L I
7, ~
. ;4-22,(4-21\4 ) 2e,M, 605[2(*< AV'*L )3

2
the last equation is correct to an accuracy of ~€1,.

We determine ithe right-hand side of Eq. (3.36)

22



lﬂ(o) o) . R
-% o... M K:.\?m(?x’a.m’ + L, ) - (3.39)

—[?+28:4{$‘ Vig }J Ma S-uﬂ(KaAV'r’ de)._

Y 2£€ JIJL, -~
bol =
3 742 }’.2 I ho ”

=~&¢ (, ) Kslu Mos;’n (KoAV ""L'W)'

t
' ]

el

) =-M° Sin (KQAV\%— Lq, 2¢, (

And so
L | ! (30[1'-0)

The error for the same variables is
. : - 2
) ¢ /V‘vo)

The maximum value of v = v = from which

2’
1 el < & 5 =

S X
ﬂdwt‘.

If we choose N\ = I, then already as a result of the first iteration
' = {ly] —ia) gt
1Y e = 12 e = 1248,

The order of magnitude of the accuracy of the solution (~ 812) with respect to
the first approximation agrees with that obtained in Section 10 with the

Eq. (3.26) and amounts to ~ 1 x 10-6.

+« Such agreement is explained by the fact that Y3 is a slowly varying
.quantlty (Y3 = cos i). Therefore, the first approx1mat10n to the solution, taken
.as Y3 = YBO’ already gives a sufficiently accurate solution. It is well known
that for all iterative methods it is important to spe01fy sufflclently ‘accurately
the first point (in functional space). In this connection it is'clear why the - /27
natural expansion in the small parameter &1,'which was presented in Section 9,

is less successful.

12, The discussion above concerning an estimate of the first approximation
shows that its error does not exceed a quantity ~0(31) g,alz. This error should

not be-admitted into the calculation; since the problem itself is set up with an
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ac&uracy not exceeding the quantity €+ And' so, a solution of the system (3.9)

can be written in the following form:

Y= My sin (K av i b, )5 e 1

%y = MoKy s (K, 8V + L), (5.41)

: Al T s w2 2 S\
hmdo M v 2t cos® (v L],

‘ 2 , . . K 3 .

where Kg='§""264?{30 L iaz_‘ o}/s "
. 2 Xzo

2 _ gt Ta

M0=‘gqg+—;c-2_ °

']
Upon introducing the equations for the cut-off functional in a noncentral
field, complications appear which are connected with the fact that in finding
the prediction time it is now impossible to use a single~valued relation between

Auy and Avy, since now w = const.

¥

If we use the derived solution (3.41), then we 'can establish this connection,

using the relatlon (2.14), Wthh will now have the following form:

_ Yy, eV - _
tjkuw.\.u = , )
%, {v,m_\.vz,) (3.42)

L]

where YlO’ are the current values of Yl’ Yz, Y., which: are calculated 128

T20* Y30
at the same time on the traJectory

3

*c? (a *’Af{g):f'i:t'}}(xaé‘,’g + L ). (3.43)

Since

_V(u-+Au ) = sun ('u*'l‘—ugi) .
tz . YR T .. 2 oy PO
\/{-Sm (u“\.uj) =y -4

|

-

then we obtain instead of (3.43)

\/7' "«g- 5/:
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from which

Ko 7ss

.
ol

{ 0 ——il
G ﬂ(Km )-J.- a*actzj o
Av, = 2EH\™T Vi-ta-7i

(3. 4k)

g Ko
: . - 4

The complete system of equations for the algorithm for rotating the orbital

planéuin a noncentral field is presented in Appendix 3.

We note that when 61 = O, this system of equations can serve as an algorithm

for rotation of the orbital plane in a central field.

In Appendix 3.1 tHe expression for the propulsion cut-off functional is
written in a different form than in Appendix 1.1, which appears to be more

acceptable here. .

13. The system of equations in Appendix 3.1 is the simplest and most
convenient in practical applications; in addition, it solves with sufficient /29

accuracy the problem posed. An estimate of this accuracy was made above.

The largest error which one could call systematic arises for the relation

t = £(v). (3.45)

We now estimate -this error. The inaccuracy in the knowledge of (3.45) is
expressed by the errors upon rezeroing the functional of the expression 10 in
Appendix 3.1, where all the quantities are considered as arguments of v, and
the values of KP are célculated on the basis of the expfession 8 of the same

system, whose errors are characteristic of (3.45) and vice versa.

Earlier, we wrote that

— & (3.46)
b \,///H‘p 5{ ?
We take, as usual,
‘I ’ J‘ . .
o= - (3.47)
VrR

where

PO and yo were determined aboﬁe.
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We find the logarithmic derivatives in (3.46)

ttes[flprglp izt ], a0

furthermore, the derivatives of the Eq. (3 48) 'at the point t, is

+l
gt _42 £2 dH (3.49)
t, ,LZ P .

Now, one can write the linearized equation for (3.46)

%

ili ) P “  1 5‘31"
: _ﬁ:i-_ =1 ~ -‘:; -}-(6‘(’,‘,):'{10{‘2-? ,—{":; )_‘J..’, .

dv (3.50)
Evidently, .
(54 Y 5y 415 Y
R

" Taking into account Appendix 2.2 and Appendix 2.8, we obtain the following

estimate:
PUNINERS '
B R CLI . o hsp (3.52)
2 t; i ~ 2 vatg*zei ~~ 3336 . .
From the equation V -
. ° ". '(‘ . . n "
\ u‘& N :
. A=h+ ZHV = Ao ST, v (3-53)
: 3, e

.

it follows that the error in linearization is C

\

’ ’ . e -
- R . :
Assuming that the time of flight corresponds to v = /2, we obtain

15)\ §$.~O.2~0.0016- zo,af‘/,.g. (3.55)

nﬂhq
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This quantity corresponds to an' error at the surface of the earth of ~ 3 km.

As was indicated above, all the.remaining errors are less than the one
derived here. Therefore, there is no sense in searching for a more accurate
solution of the equations of motion with such information. The errdr of 3 km
can be reduced if one knows more accurately the parameters of the orbit at the
1nstant control begins, which in its turn implies a requirement for a more

~accurate descrlptlon of the equations.
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Appendix 1.

&

Combining the series of equations presented if the first section, one can

describe the algorithm for rotatihg the orbital plane in a central field in the

following form:

I
5,
3.

-3

5, .

15,

Here

28

‘Kz=l

’ A_ .
f=f .
7 P
Xa;“y{"’ Kadys - .

2 : 2 ,»;um_g L ' : )
X;_?i{.jzfr'z;‘?- ?j-lyv.: . {‘ -:h.'g?‘. - .

Ko 0
1-8T g

on {i) - ¢ F,{q (;),é tf-?off; A

jtvoffz--tonA(i'»)" T> T ., | J A

K
2 ‘{g‘x&z H
)\P = A vy,

Xs . - & IR

- B

"cosA..\/U ()(’4 3/‘; .cos()\ )\ +3’3’*?

R

)\ _/\ y"o.

sinf = cons‘t y

~ 0 -, t<Tonq Wish2) |
©= { t-t c Loy

o

[31
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AEBendix 2.

We consider the cbnditions under which it is possible to separate the system 132

(3.3) into two independent parts with an accuracy of the ordei‘ of ~ 812.

e

&, 3!{-,.; z"/z y
2

. 3
. ‘v . \g
S. 3’1:54‘[{+_..;§;_

2 (App. 2.1)

~ t 2t _
Se Xs == ==Y N .

P4

The system (App. 2.1) differs from (3.3) in the fact that in it kz = 0,
in accordance with the ideaof the problem being considered. We assume that

the deviation of the satelli'te from the unperturbed orbit satisfies the condi-
[]

|5y
Ly,

“tion e

f.é £, .
i " ° (app. 2.2)

where

yo corresponds to the unbert-urbed motion.

Taking into account (App. 2.2), we obtain
.l 2 e &y
‘ £1=‘5(R°.§) = i(&ga) [-3-2-2'-—%4-1 .

from whilch we get with an accuracy of the order of ~ 82.

-y

. .
&§=<R°g°) E L : (App. 2.3)
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It is obvious that if the quantity Py varies liytle in the specified time 133
interval and one can neglect its variations, then Eqs. 4, 5, and 6 can be solved

independently of the remaining equations (App. 2.1).

i i ) 5(;;31‘7::__{‘ -Eﬁ._fﬁ"—h . (App. 2:.4)
35”?% [{"' %Y, ] R, [4 P, %o-‘ ”

To estimate these terms, we integrate Eqy (3) in (App. 2.1)

4

-

A

P ;,'."  S 8,
?’:.7'1537.6?2{‘32 -w ( ‘;j )6'(&30.; (4+z . }6,5¥“g

We denote by the index "1" the first approximation

8 s <jw>(4.f.)( _f)m dv, .
F: g . 39 (App. 2.5)

< 4e Jl(“‘”” __(4 -e)2e N G v €,

%eﬂ““% |12 SNSRI

We make the following remarks with regard to the last inequality.
) .

1. In every case, for an actual trajectory of the motion the parameter of

the orbit Po is always larger than the average radius of the ;earth Ro’ i.e.,

P >R.
o o
Then . T .
Roo ) "Z !
\ L_Z_)_F)_“_c_‘“% §<"R°‘, L.
I Po%o Fo ( } 0&’5
In its tﬁrn, ’
y, = 1l/r
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&

or
el
e

oo
< 4
~ 1 .

3

e

PP

. H !

4 v 3

__s-u}jog é?"
o o

where r, is the radius vector qf the unperturbed orbit, which is always larger

than the average radius of the earth according to the idea of the problem.

Finally we obtain,

e

’ f{ Ai‘,‘ I 2
i E__,.Q,:.fif-i- }":,‘3' (App. 2.6)
¢ ow '
' '.0 ¢o
2, We note that, based on the conditions of the problem,
& ~f ' !
5 5 - ({2 "’43
this follows, for example, from Eq. (2.10).
It is completely evident that
o N,; . . '
. égg U €4,
from which
v ‘/
?'/40 z. ‘“ é@o 40
We find the extreme of this equatlon
| \( =T g VIR T R
: ( -{ 3 =:‘_- . S vIm v it e
'.Bg“ 0 =3 % GLSFHF 2
Thus, -
i . 'y { .
Y L - .
i Yo ggo l \ 2 (App. 2.7)

3. The expression ‘1 + & = 2824.a1ready takes into.account terms of
o(e). The integration range should at the maximum not exceed 1/2 according to

the idea of the problem, i.e.. —
. jg .

. '{y_v,, %é—é‘

® .

. Taking into account the remarks made above, we obtain instead of (App. 2.5)

=

@

<26 (1vE-26")[dv = 0 (1+€-26") ()2 Te(1we2e™).
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Since there is no sense taking into account the terms A:EZ in the problen, theh Z}S

5 : .
\--—*l. l=ae(v-vyg Ve, (App. 2.8)

and the error allowed-in this case does not exceed
~TEE s 8,25.10"5 ‘04 826I0"-"

We turn to equatioﬂ (App: 214)

e ﬁ,\g,

L‘f“' (V-,‘,‘?’a})"ej =-*i- [4-5(2(“"9».)‘*‘“'] (App. 2.9)

Under the conditions of our problem ’

‘Lh‘;{-.fé—g '=., [»ﬁ é('TM)} ,j_:}%iﬁ_ (App. 2.10)

Ve o2l
¢ 2

In Eq 5 of (App. 2.1) we consider the following term:

-

- » , z

N A Y ) R &12';
f_—-,.. Ra 2& 43445, 2 (R

from which we obtain instead of Eq 5

I

X -."X [4*25103 J

= (R e

where

for circular orbits

&5, =4 _.' u C‘%z(R"cf‘ = co n_;t < 5
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Agg_endix 3.
The equations of motion in the case of the rotation of the orbital plane - /36
in a noncentral field have the following form.

&
by G e e S

I. Y=Y,

2. Y. ==t (Ka- 26, x.m,

&

3‘ va-x X‘I'

. i.K - Ko )
LU T 4-BC. . -
- e o f,f<fnw, 1@un
0'-' T= t- on (v} s T <t iqtof:f‘.} }
- toff ton(‘} .- t >€' f >.
L - D | i [} M
‘bo’ B e ) - .
‘ SV, . .
___i.._. x,~2E. %
: X k+ V.
8. . \)‘ )’ [

.9. | 57»“’““%( )
IO.‘-.{ o::;c'tg \/ =% - ].‘.a’zc [Ko
. ,.z

II, .CoS & = \j ({-3;: ) («I-X‘; ) ".Cos (}\;- )\ )+ X Yfé,

£ = 0,004623, |
4 .
&= =

¥ = is the radius of the circular reference orbit.



In the system (App. 3.1) Eq.( 11) can be taken as the functlonal according to /37
which the propulsion cut-off takes place. The value of v = vcut-off
obtained upon rezeroing of the equation

cos A =1 = 0 - ) (App. 3.2)

and the value of the argument is taken equal to ; + Av&, i.e., at the assumed
time of passage over the point P. In such a form, the system (App. 3.1) is

not suitable for calculation, since the values of the quantities must be taken
at the predicted time v + Avy. For this we use the analytic expressions for the
variables Yl’ Yz’ and YB obtgined above in (3.30), which we substitute into

Egs. (7), (9), and (;1) of the system (App. 3.1).

Eq. (7) has the following form (€_=0):

-

sin® (K Ave L)\ 4-82 [4028, 3 cos? (mvvuoﬁ

30, ——2&
“i A : o AT 28 Yy, cos (K oV L)

SZ--ZE (App. 3.3)

Here, it is necessary to recall that Y is the initial value corresponding to

30

the current value of Y., calculated directly from Eq. (3) of the system

3’
(App. 3-.1); therefore, the index "O" will be dropped from here on.

Instead of Eq. (9) we have the following: -

K b rt KAV 4 "o "i' rbZr‘ ..'L . !
, _)_\c=<2+mt9z' al _5 = }\/‘4-M° [4+28,3] cos* (KoaV+ Lo )] (App. 3.%)

Eq. (11) for the cut-off functional now has the following form (see App. 3.2): /38

%

r . - . Py L

o, ™ bA R . - g, -2 U, A 3 3 ’
V(-4 ) [1-M] sinEx ave bl - cos (A )M)‘*B’@Mn“‘“(‘@v*“*) =0 (pp- 3:5)
v 03 o : .
In all three of the last 'relations (37 L, and 5) one should substitute the
quantity Av = Avy instead of Av, which is found from Eq. (10) of the system

(App. 3.1).

To find the functional, it is necessary to know 0, for which it is neces-
sary to integrate (App. 3.3). To simplify the calculatlons we expand the rlght—

hand side of this equation in powers of 6
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2

ats -<:E s‘.n (x Avrho)[m Xcas (K.,AV*'L ( ;f’v’x ‘+2)'£1+""].

Fed

If as before one restricts the terms in g to, the first order of magnitude,
*
then we ob'taln

¢ - . 2 A - . —
Ql ~ -2 %-Mi - EtSLfl. <K9'AV *. L ) ) - (App. 3.6)

Having integrated this equation, we obtain

N rwevld |
Q= & \H [ V"'L ‘*‘SLﬂZ(K“AV"’ L. ‘)] (App. 3.7)
or
L= Keavrb T, smf.kx AV?LQ\] i
a=-¢ 4%-M° TR, [{ 2(xgav+ L) . (4pp- 3:8)

\

Having taken account of 'these considerations, we ob‘tain the following algorlthm

for the rotation of the orbital plane in a noncentral field:

I. \al‘ = Xz’ .
]
2o 3’2-_-.-‘4’41-7{ ( Z‘E Xa? ))
ST R . £39
. ; A 3 '
R A R A - (epe 329)
<
o K= 7T
_ C g {iadia)
5. [° U
. T=4 t-ton(‘)_ i %n.(i)gté ‘Loff g )
- ‘ . * . L]
[ L ' !
Ctorf Yontys T % o
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Ko Kﬂ%

Vf-&}—:/;‘

2

6. t=t°‘/) .'.
,‘7‘ )\P=>\o+&3tov, : |
8. K LJ —a'tct
Yy P
9 !

:' . S 2 OAV., ¥ i—o:‘-s
0. Xeo-e|im 'W”L [‘ e

S tg (KodVy =Lio o
I As Juautg[—?———i—-—(“ Yt \11 M {4+2c Yo cos* (ko

22 i) {f-m:san*(xaivgs»_mf“fé«@% Nt o0

where -

K
‘R‘ 4 3’3 txi‘ 2& LX.%}

Q .

Py
' 4\KAV’7-!-L-.,, -

|, PP |

Vg""bp} 3

e o242,

/
4-...____________{ ——
\.o- 9

— 2
e

}{12.—. s«'.n‘fo =-const,_
€= (Rag '\26=c0n$f, _

E=0 001623 )

Y= 2
a r

d -3 ‘ _a’g

M 1+ -~
1 K?
o
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